21.06.2017
Гидроизоляция в комнате, где будет устанавливаться ванна или душ, должна быть качественной, ведь именно здесь возможны постоянные...


21.06.2017
Мрамор появляется в результате соединения известняка и доломита под воздействием перекристаллизации различных осадочных пород в...


21.06.2017
Трактор - это техника, без которой сложно представить выполнение дорожно-строительных, землеройных и других работ. Именно поэтому...


20.06.2017
При монтаже пластиковых окон немаловажным пунктом является оформление ее откосов. Для отделки проемов используется материал, из...


20.06.2017
Первые недели жизни малышу требуется на сон не менее 18 часов в сутки. Поэтому очень важно правильно организовать место для сна....


20.06.2017
Утепление или же преобразование лоджии собственными силами, как и при работе профессионалов, всегда начинается с робот по ее...


Ребра жесткости

07.07.2016

Разновидности ребер жесткости

Для повышения устойчивости пластинок металлических конструкций устанавливают негнущиеся ребра жесткости, которые при выпучивании пластинок остаются прямыми и создают для них дополнительные опорные закрепления. Негнущиеся ребра жесткости разбивают пластинку (обычно стенку, а иногда и сжатый пояс) на ряд полей меньших размеров. Деформации стенки внутри каждого такого поля рассматривают как самостоятельные. Уменьшение контурных размеров полей, образованных вследствие постановки ребер жесткости, в значительной мере повышает устойчивость пластинок.
В зависимости от расположения ребер различают:
- продольные ребра жесткости, идущие параллельно сжимающим усилиям; их эффективно применяют в центрально и внецентренно сжатых пластинках, а также в наиболее сжатых частях изгибаемых пластинок;
- поперечные основные ребра — расположенные перпендикулярно направлению сжимающих усилий по всей ширине пластинки; их применяют для усиления изгибаемых пластинок; они особенно эффективны в тех местах, где преобладает влияние скалывающих напряжений;
- поперечные короткие (дополнительные) ребра — расположенные, как и предыдущие, перпендикулярно сжимающим усилиям, но только в зоне наибольших сжимающих напряжений. Короткие ребра — наименее эффективное средство усиления пластинок, а постановка их — трудоемка. Применение коротких ребер жесткости не рекомендуется, но допускается в клепаных балках, а также в сварных — между сжатым поясом и продольным ребром. В двустенчатых балках роль коротких ребер играют короткие диафрагмы, устанавливаемые для поддержания рельсов. Эти диафрагмы доводят до продольных ребер жесткости.
Ребра жесткости

Ребра жесткости в сварных конструкциях обычно выполняют из двух одинаковых пластин, расположенных в одной плоскости с двух сторон стенки, — парное симметричное ребро (рис. II—30). Реже взамен пластин ставят два неравнобоких уголка, приваренных к стенке по перу (рис. II—30, б). Во всех случаях швы делают сплошными, угловыми, наиболее тонкими. В клепаных конструкциях ребра осуществляют из уголков, предпочтительно неравнобоких, приклепанных к стенке по меньшей полке (рис. II—30, в и г). Между уголками и стенкой помещают прокладки толщиной, равной толщине поясных уголков. Торцы уголков ребер жесткости в клепаных конструкциях доводят до выкружек поясных уголков при отсутствии больших сосредоточенных и подвижных грузов. Если же такие грузы есть, ребра жесткости должны быть плотно пригнаны (пристроганы) к уголкам сжатого пояса.
Торцы ребер жесткости в сварных балках приваривают к сжатому поясу, а чтобы устранить пересечение сварных швов, внутренние углы пластин, образующих ребра, между поясом и стенкой скашивают, как показано на рисунке II—30, д (катет у стенки 6—8 см, у пояса 4 см). В многопролетных балках и в балках с консолями напряжения в поясах меняются по знаку в зависимости от эпюры моментов; в соответствии с этим меняется и крепление торцов ребер жесткости, которые всегда приваривают только к сжатым поясам. Если по верхнему растянутому поясу перемещаются подвижные грузы, то торцы поперечных ребер должны быть фрезерованы и тщательно подогнаны к этому поясу (до приварки ребер к стенке).
Торцы промежуточных ребер жесткости не следует приваривать к растянутому поясу балок. Швы поперек растянутого пояса резко концентрируют напряжения, что приводит к преждевременному появлению трещин от усталости материала и при резких перепадах температуры. Торцы опорных ребер всегда приваривают к нижнему поясу.
Назначение размеров ребер жесткости в балках и стойках

Стенки балок следует укреплять поперечными ребрами жесткости, если b/δ>70√2100/R. Расстояние между поперечными (основными) ребрами должно быть не более 2b при b>100 δ и не более 2,5b при b<100 δ. В местах приложения к поясу больших неподвижных сосредоточенных грузов следует устанавливать поперечные ребра.
Ширину bр половины симметричного поперечного ребра жесткости, выступающей с одной стороны стенки (см. рис. II—30), при отсутствии продольных ребер назначают по эмпирической формуле:
Ребра жесткости

В размер bp включают и толщину прокладки под уголком клепаных балок. Толщина ребер жесткости δр, необходимая для создания достаточной жесткости и устойчивости их свободного края, должна быть не менее bp/15, а для сталей высокой прочности — не менее bp/12.
Если в балках, арках и т. п. есть продольные ребра жесткости, то поперечные ребра служат для них опорами и потому оказываются дополнительно нагруженными. По этой причине жесткость их и момент инерции следует увеличивать на 20—25% по сравнению с величиной, определенной по формуле II—85. СНиП предлагает определять требуемый момент инерции поперечного ребра при наличии одного продольного ребра по формуле:
Ребра жесткости

а для стали высокой прочности Ip=6 bδ3.
Ширина bк.р половины, выступающей с одной стороны стенки короткого ребра жесткости должна быть не менее 2/3 ширины основного ребра b. Длина коротких ребер жесткости должна быть не менее 0,3 высоты стенки и не менее 0,4 а1, где a1 — расстояние между осями двух соседних коротких ребер, или между коротким и основным поперечным ребром (рис. II—29,б). При наличии продольных ребер длину коротких поперечных назначают равной расстоянию b1 между сжатым поясом и продольным ребром.
Необходимый момент инерции продольного ребра жесткости определяют по формулам таблицы II—25 в зависимости от отношений b1:b; а:b и толщины стенки δ.
При расположении ребер жесткости только с одной стороны стенки момент инерции их вычисляют относительно оси, совпадающей с ближайшей к ребру гранью стенки.
При встрече продольных ребер балки с поперечными прерывают продольные; поперечные (основные) идут непрерывно. Для устранения пересечения сварных швов внутренние углы продольных ребер срезают (катет у стенки 6—8 см, у поперечного ребра 4 см; см. рис. II—30, д).
Ребра жесткости

Размер продольных ребер жесткости для усиления сжатых по всей ширине стенок стоек и других подобных элементов (рис. II—22) можно определить по формуле:
Ребра жесткости

Формула (II—87) действительна в пределах 0≤α≤1, то есть для центрального и внецентренного сжатия, когда нормальная сила не выходит за пределы ядра сечения.
Если принять в качестве предела ширину стенки сжатого элемента (стойки) b = 150δ и толщину ребра δпр.р=0,75δ для центрально сжатой стойки (α = 0), то из формулы II—87 получится:
I'пр.р = 495δ4.

Приравняв полученное наибольшее значение требуемого I'пр.р к значению Ip для ребра из двух приваренных полос или из двух приклепанных уголков, можно определить требуемую величину свободного выступа ребра жесткости при δпр.р=0,75δ:
Ребра жесткости

Что и рекомендовано нормами: bпр.р≥10δ и δпр.р≥0,75δ.
Для продольных ребер, расположенных с одной стороны, ширину следует назначать bпр.р≥13δ при δпр.р≥0,75δ.
Продольные ребра жесткости сжатых элементов в отличие от балок являются основными и идут непрерывно по всей длине сжатого элемента. Для их пропуска в диафрагмах (поперечных ребрах) делают вырезы. Площадь поперечного сечения продольных ребер включают в общую расчетную площадь всего сжатого элемента. Такое включение немного уменьшает rx и существенно увеличивает ry поперечного сечения и часто бывает полезным. Поэтому размер продольных ребер целесообразно принимать несколько больше минимального, указанного выше.