Молибденовые стали


Молибден подобно вольфраму и хрому сужает v-область, т.е. повышает критическую точку железа A3 и понижает точку A4. При содержании молибдена 2,5-3,5% на диаграмме состояния железомолибденовых сплавов область твердых растворов v-железа замыкается. Сплавы с содержанием молибдена более 3,5% являются ферритными и критических точек не имеют. С железом молибден образует твердые растворы и два интерметаллических соединения: Fe3Mo2 с 53,2%Мо и FeMo с 63,2% Мо. Молибден понижает концентрацию углерода в перлите, т.е. сдвигает точку S на диаграмме Fe-C влево. При нагреве доэвтектоидной стали молибден повышает точку A3, а на точку A1 оказывает слабое влияние.

Молибден - сильный карбидообразующий элемент, образующий с углеродом устойчивые карбиды MoC и Mo2C, но в стали с 8-10%Мо и менее в основном присутствуют сложные двойные железомолибденовые карбиды типа цементита - (Fe, Мо)3С. Соотношение железа и молибдена в этих карбидах в зависимости от состава стали и условий термообработки может меняться в широких пределах.

Процесс карбидообразования в молибденовых сталях происходит следующим образом: специальные карбиды образуются только в температурной области перлитного превращения благодаря достаточной диффузионной подвижности атомов молибдена при длительных выдержках. В сталях с высоким содержанием молибдена выделение специальных карбидов в очень тонкодисперсной форме происходит сразу же после превращения в верхней перлитной области около 700 °С.

При превращении в промежуточной области вплоть до температур порядка 500 °С выделяется только карбид Fe3C, содержащий молибден. При длительных выдержках в районе 500 °С выделяются специальные карбиды Mo2C, которые благодаря неравновесному состоянию обладают крайне высокой дисперсностью.

Коэффициент диффузии молибдена в и a-железе очень мал, причем в a-железе во много раз больше, чем в v-железе. В присутствии углерода коэффициент диффузии молибдена в v-растворе увеличивается. В то же время молибден уменьшает коэффициент диффузии углерода в v-растворе ниже 1000 °С, но в интервале 1000-1200 °С он практически не влияет на коэффициент диффузии углерода, а при более высоких температурах даже увеличивает. В присутствии молибдена самодиффузия железа замедляется, вследствие чего повышается температура рекристаллизации а-железа.

В литых сталях положение мартенситной точки от содержания молибдена практически не зависит. В доэвтектоидных сталях добавки молибдена значительно замедляют образование перлита и примерно на 100 °С повышают температуру максимальной скорости превращения. Все содержащие молибден стали имеют высокую скорость превращения в промежуточной области и сравнительно невысокую - в перлитной. Молибден уменьшает критическую скорость охлаждения в значительно большей степени, чем хром. Молибденовые стали имеют высокую прокаливаемость и мало склонны к перегреву.

Молибден повышает устойчивость сталей против отпуска, особенно после закалки с высоких температур, что обусловлено выделением в критической температурной области тонкодисперсных специальных карбидов. В порошковые стали молибден вводят для увеличения прочности, износостойкости и коррозионной стойкости. Небольшие добавки молибдена улучшают пластичность порошковой стали.

Двойные Fe-Mo сплавы практического применения не нашли, что вероятно, объясняется быстрым ростом зерна в железе под влиянием молибдена, а также большой усадкой. Кроме того, молибден задерживает начало эвтектоидного превращения в стали и, следовательно, оказывает существенное влияние на закалочные свойства сталей.

Влияние молибдена (табл. 14) на свойства железографитового материала ЖГр1 в спеченном состоянии и после химикотермической обработки - цементации в твердом карбюризаторe при температуре 920 °С с закалкой в масло и последующим низким отпуском при 180 °С - исследовано в работе. Исходными компонентами служили порошки карбонильного железа с крупностью частиц 3 мкм, коллоидальный графит марки C-1 с размером частиц 7,6 мкм и молибден крупностью 0,9 мкм. Спекание проводили в водороде при температуре 1150 °С в течение двух часов.


Испытание материалов с различным содержанием молибдена показало, что в отличие от хрома молибден благоприятно влияет на антифрикционные свойства железографитовых материалов: уменьшаются коэффициент трения и износ, повышается максимальная нагрузка до схватывания. Особенно это влияние заметно на материалах, подвергнутых химикотермической обработке. Такое благоприятное воздействие молибдена на антифрикционные свойства объясняется его несколько отличным от хрома влиянием на формирование структуры как в процессе спекания и химико-термической обработки, так и в процессе трения.

Так как в присутствии углерода коэффициент диффузии молибдена в v-железе выше, чем коэффициент диффузии хрома, структура материалов, легированных молибденом, более однородна и представляет в спеченном состоянии легированный перлит с карбидами, а после химико-термической обработки - мартенсит с остаточным аустенитом и карбиды

типа Me23С6 и Me3С. Микротвердость основы сталей по мере увеличения в них концентрации молибдена непрерывно растет. Более высокая однородность молибденовых сталей по сравнению с хромистыми объясняется также еще и тем, что карбид хрома образуется при температурах 900-950 °С, в то время как образование карбида молибдена начинается лишь при температурах 1100 °С и выше. Таким образом, растворение молибдена осуществляется диффузией молибдена в железо, в то время как в хромистых сталях сначала образуется карбид хрома, а потом уже начинается его растворение в железной основе.

Так, структура стали ЖГр1М10 в спеченном состоянии представляет собой сорбитообразный перлит, в то время как в стали ЖГр1Х10 можно обнаружить весь спектр структур от ферритной до троостито-мертенситной. В сталях, легированных молибденом, объемная доля карбидов больше, а их средний размер значительно меньше, чем в хромистых сталях. Это связано, очевидно, с более интенсивным выделением в молибденовых сталях мелких вторичных карбидов из пересыщенного твердого раствора при охлаждении. Так в интервале температур 400-500 °С из пересыщенного твердого раствора выделяется крайне дисперсный карбид (Fe,Mo)2C, появление которого существенно влияет на средний размер карбидов. Мелкие карбиды молибдена, очевидно, более энергоемки, чем карбиды хрома, что подтверждается и существенной разницей в их микротвердости (1080-1230 HV имеют карбиды молибдена и 800-900 HV карбиды хрома).

Увеличение энергии связи и образование мелких износостойких карбидов, которые в процессе трения не выкрашиваются, как карбиды хрома, а образуют удобные пятна касания, что существенным образом сказывается на уменьшении износа стали, легированной молибденом. В хромистых сталях, подвергнутых химико-термической обработке, в процессе испытания количество остаточного аустенита увеличивается, в то время как в сталях ЖГр1М5, ЖГр1М10 эти зависимости носят убывающий характер. По-видимому, при воздействии скорости и нагрузки молибден способствует протеканию направленного аустенитно-мартенситного превращения, подобно аустенитным литым сталям, которые упрочняются в процессе трения.

Обычно Mo добавляется в спеченные стали вместе с другими легирующими элементами, такими как Ni, Cu, Mn. Это обусловлено, прежде всего тем, что Мо-дорогостоящий элемент. Фишер показал, что добавление 1%Мо в сталь, содержащую 2%Ni, 1%Мп и 0,4%С, увеличивает предел прочности на растяжение на 130 МПа.

В работе было обнаружено значительное повышение твердости стали, содержащей медь и никель, по мере добавления в нее молибдена. В табл.15 представлены свойства стали, содержащей l,75%Ni, 1,5%Сu, 0,5%Мо, полученной из частично легированного порошка (DISTALOIYSA) и порошковой смеси. В том и другом случае было добавлено 0,6% графита. Давление прессования 589 МПа.

Численные значения в табл.15 представляют собой среднюю величину, взятую из пяти измерений.

Влияние молибдена на свойства спеченной стали, легированной 2%Си и l%Ni, изучено в работе. Сталь получали прессованием и спеканием при 1200 С в течение 1,5 ч В качестве исходных материалов использовали восстановленный железный порошок, электролитический медный порошок, карбонильный никель и ферромолибден. Влияние содержания молибдена и углерода на механические свойства сталей в спеченном состоянии приведены на рис. 10. Понижение предела прочности и пластичности стали с увеличением содержания молибдена и углерода связано с образованием хрупких специальных карбидов в процессе спекания. Сталь, содержащая 0,4% Мо и 0,6% С, имеет одновременно наиболее высокую прочность и пластичность.

Термическая обработка, заключающаяся в закалке с 870 °С в масле с последующим отпуском, значительно повысила прочностные свойства (рис. 11). Закалка с отпуском при 200 °С почти в два раза повышает предел прочности стали оптимального состава, но относительное удлинение при этом снижается до 1%. Наилучший комплекс механических свойств Достигается после отпуска при 650 °С: прочность возрастает по сравнению со спеченным состоянием на 15-20%, а пластичность остается на том же уровне (~ 3%).

В работе изучены свойства сплавов Fe-Ni-Mo, в которые добавляли фосфор и углерод (табл. 16). Часть образцов получали путем двойного прессования и спекания. Первое спекание проводили при температуре 850 °С, второе -при температуре 1250 °С. Образцы спекали в атмосфере осушенного водорода. Давление прессования было выбрано 589 МПа.

Эспер в работе отмечал, что при спекании сталей с содержанием никеля от 2,5 до 3,5%, молибдена от 2,5 до 4,5% и фосфора в количестве 0,45% при температуре 1250 С в сухом водороде можно получить следующие свойства: предел прочности на растяжение более 600 МПа, предел текучести более 450 МПа, ударную вязкость более 60 Дж.

В работе отмечалось, что углерод улучшает свойства Fe-0,45P-2Cu-2Ni прессовок после спекания, а введение фосфора и углерода в отдельности повышает прочность Fe-Mo-Ni прессовок. В работе исследовано совместное влияние фосфора и углерода на свойства порошковых молибденовых сталей. Предварительно была приготовлена смесь Fe-0,45P-C. Содержание углерода составляло 0,4 и 0,8%, а содержание молибдена варьировалось между 1 и 4%. Затем смеси прессовали при давлении 691 МПа.

Плотность после прессования составляла (6,9 ± 0,05) г/см . Прессовки спекали в течение 30 мин в сухом водороде (точка росы -40°С). Скорость нагрева 8 К/мин, скорость охлаждения 20 К/мин.

В процессе спекания происходило уменьшение содержания углерода на 0,1±0,02%. Установлено, что во всех исследованных образцах прочность и линейная усадка возрастают с увеличением содержания и температуры спекания (рис. 12 и рис. 13).

Удлинение уменьшается с введением молибдена, но с повышением температуры спекания возрастает (рис.12, 13). Повышение содержания углерода увеличивает пределы прочности и текучести при растяжении и уменьшает пластичность и линейную усадку (рис. 12). Из полученных результатов видно, что при введении соответствующего количества углерода и молибдена можно избежать изменения размеров.

Металлографический анализ показал, что при температуре спекания 1120 °С стали с содержанием 0,8 и 1%С имеют структуру, близкую к перлитной с рассеянными ферритными выделениями. Из анализа диаграммы состояния системы Fe-C-P следует, что при наличии 0,8%С и 0,45%Р в железных прессовках спекание происходит в аустенитном состоянии.

При введении более 1,2% Mo ферритная фаза становится стабильной в температурном интервале от 1050 до 1200 °С. Углерод хорошо известен как стабилизатор аустенитной фазы. Таким образом, при содержании 4% Мо спекание происходит в смешанной а+v-фазе, поэтому и структура является неоднородной - с зернами феррита и перлита. При содержании углерода выше 1% образуется жидкая фаза в сплаве Fe-Mo-C при температуре спекания выше 1200 °С. При этом происходит заметная гомогенизация.

Таким образом, одновременное добавление углерода и фосфора в Fe-Mo композицию повышает предел прочности на растяжение и предел текучести, но уменьшает пластичность. Добавляя в Fe-0,45%Р прессовки углерод (от 0,4 до 0,8%) и молибден (от 1 до 4%) наблюдалось повышение прочностных свойств с одновременным уменьшением пластичности.

Имя:*
E-Mail:
Комментарий:
Информационный некоммерческий ресурс fccland.ru ©
При цитировании информации ссылка на сайт обязательна.
Копирование материалов сайта ЗАПРЕЩЕНО!