Чистая приведённая стоимость

30.04.2022

Чистая приведённая стоимость (ЧПС, чистый приведённый эффект, чистая текущая стоимость, чистый дисконтированный доход, ЧДД, англ. net present value, NPV) — это сумма дисконтированных значений потока платежей, приведённых к сегодняшнему дню. Показатель NPV представляет собой разность между всеми денежными притоками и оттоками, приведёнными к текущему моменту времени (моменту оценки инвестиционного проекта). Он показывает величину денежных средств, которую инвестор ожидает получить от проекта, после того, как денежные притоки окупят его первоначальные инвестиционные затраты и периодические денежные оттоки, связанные с осуществлением проекта. Поскольку денежные платежи оцениваются с учётом их временной стоимости и рисков, NPV можно интерпретировать как стоимость, добавляемую проектом. Её также можно интерпретировать как общую прибыль инвестора.

Определение

Согласно американскому профессору Энтони Аткинсону чистая приведённая стоимость — сумма всех дисконтированных денежных потоков (притоков и оттоков), связанных с инвестиционным проектом.

Для потока платежей CF (Cash Flow), где C F t {displaystyle CF_{t}} — платёж через t {displaystyle t} лет ( t = 1 , . . . , N {displaystyle t=1,...,N} ) и начальной инвестиции IC (Invested Capital) в размере I C = − C F 0 {displaystyle IC=-CF_{0}} чистая приведённая стоимость N P V {displaystyle NPV} рассчитывается по формуле:

N P V = ∑ t = 0 N C F t ( 1 + i ) t = − I C + ∑ t = 1 N C F t ( 1 + i ) t {displaystyle NPV=sum _{t=0}^{N}{frac {CF_{t}}{(1+i)^{t}}}=-IC+sum _{t=1}^{N}{frac {CF_{t}}{(1+i)^{t}}}} , где i {displaystyle i} — ставка дисконтирования.

В обобщённом варианте, инвестиции также должны дисконтироваться, так как в реальных проектах они осуществляются не одномоментно (в нулевом периоде), а растягиваются на несколько периодов. Расчёт ЧПС — стандартный метод оценки эффективности инвестиционного проекта и показывает оценку эффекта от инвестиции, приведённую к настоящему моменту времени с учётом разной временной стоимости денег. Если ЧПС больше 0, то инвестиция экономически эффективна, а если ЧПС меньше 0, то инвестиция экономически невыгодна (то есть альтернативный проект, доходность которого принята в качестве ставки дисконтирования требует меньших инвестиций для получения аналогичного потока доходов).

С помощью ЧПС можно также оценивать сравнительную эффективность альтернативных вложений (при одинаковых начальных вложениях более выгоден проект с наибольшим ЧПС). Но всё же для сравнительного анализа более применимыми являются относительные показатели. Применительно к анализу инвестиционных проектов таким показателем является внутренняя норма доходности.

В отличие от показателя дисконтированной стоимости при расчёте чистого дисконтированного дохода учитывается начальная инвестиция. Поэтому формула чистого дисконтированного дохода отличается от формулы дисконтированной стоимости на величину начальной инвестиции I C = − C F 0 {displaystyle IC=-CF_{0}} .

Достоинства и недостатки

Положительные свойства ЧПС:

  • Чёткие критерии принятия решений.
  • Показатель учитывает стоимость денег во времени (используется коэффициент дисконтирования в формулах).
  • Показатель учитывает риски проекта посредством различных ставок дисконтирования. Большая ставка дисконтирования соответствует большим рискам, меньшая — меньшим.
  • Отрицательные свойства ЧПС:

  • В руководстве ЮНИДО критикуется использование NPV для сравнения эффективности альтернативных проектов (Беренс, Хавранек, 1995, стр.240). Для устранения этого недостатка NPV был разработан индекс скорости удельного прироста стоимости (Коган, 2012).
  • Во многих случаях корректный расчёт ставки дисконтирования является проблематичным, что особенно характерно для многопрофильных проектов, которые оцениваются с использованием NPV.
  • Хотя все денежные потоки (коэффициент дисконтирования может включать в себя инфляцию, однако зачастую это всего лишь норма прибыли, которая закладывается в расчётный проект) являются прогнозными значениями, формула не учитывает вероятность исхода события.
  • Для того чтобы оценить проект с учётом вероятности исхода событий поступают следующим образом:

    Выделяют ключевые исходные параметры. Каждому параметру устанавливают ряд значений с указанием вероятности наступления события. Для каждой совокупности параметров рассчитывается вероятность наступления и NPV. Дальше идёт расчёт математического ожидания. В итоге получаем наиболее вероятное NPV.

    Пример

    Корпорация должна решить, следует ли вводить новые линейки продуктов. Новый продукт будет иметь расходы на запуск, эксплуатационные расходы, а также входящие денежные потоки в течение шести лет. Этот проект будет иметь немедленный (T = 0) отток денежных средств в размере $ 100 000 (которые могут включать в себя механизмы, а также расходы на обучение персонала). Другие оттоки денежных средств за 1-6 лет ожидаются в размере $ 5000 в год. Приток денежных средств, как ожидается, составит $ 30 000 за каждый год 1-6. Как только компания получает прибыль от реализации проекта (например, $ 25 000 после первого года), она кладёт их в банк под 10 % годовых на оставшееся до конца проекта время (то есть на оставшиеся 5 лет для первых $ 25 000). Все денежные потоки после уплаты налогов, и на 7 год никаких денежных потоков не планируется. Ставка дисконтирования составляет 10 %.

    Таким образом, требуется оценить, какая сумма больше:

    100 000 ⋅ ( 1 + 0.1 ) t ≶ ∑ i = 1 t p i ⋅ ( 1 + 0.1 ) ( t − i ) {displaystyle 100,000cdot (1+0.1)^{t}lessgtr sum _{i=1}^{t}p_{i}cdot (1+0.1)^{(t-i)}} , где p i {displaystyle p_{i}} — прибыль от проекта, полученный в i-й год реализации проекта, t — общая длительность проекта. Поделим обе части на ( 1 + 0.1 ) t {displaystyle (1+0.1)^{t}} : 100 000 ≶ ∑ i = 1 t p i ⋅ ( 1 + 0.1 ) ( − i ) {displaystyle 100,000lessgtr sum _{i=1}^{t}p_{i}cdot (1+0.1)^{(-i)}} .

    Каждое слагаемое в правой части неравенства — это приведённая стоимость денег по годам. Например, $ 25 000, полученные от реализации проекта после первого года и положенные в банк на 5 лет, дадут такой же доход, как $ 22 727, положенные в банк в начальный момент времени на 6 лет. Таким образом, приведённая стоимость (PV) может быть рассчитана по каждому году:

    Сумма всех этих значений является настоящей чистой приведённой стоимостью, которая равна $ 8881.52. Поскольку NPV больше нуля, то было бы лучше инвестировать в проект, чем класть деньги в банк (под 10 % годовых с капитализацией процентов), и корпорации должны вкладывать средства в этот проект, если нет альтернативы с более высоким NPV.

    Тот же пример с формулами в Excel:

    • NPV (ставка, net_inflow) + initial_investment
    • PV (ставка, year_number, yearly_net_inflow)

    При более реалистичных проблемах необходимо будет рассмотреть другие факторы, как расчет налогов, неравномерный денежный поток и ценности, а также наличие альтернативных возможностей для инвестиций.

    Кроме того, если мы будем использовать формулы, упомянутые выше, для расчёта NPV — то мы видим, что входящие потоки (притоки) денежных средств являются непрерывными и имеют такую же сумму; и подставив значения в формулу

    1 − ( 1 + i ) − n i {displaystyle {frac {1-(1+i)^{-n}}{i}}} мы получим 1 − ( 1 + 0.1 ) − 6 0.1 = 4.3553 {displaystyle {frac {1-(1+0.1)^{-6}}{0.1}}=4.3553} .

    И если умножить полученное значение на денежные потоки (CF), и учесть первоначальные затраты, то в итоге вычислим чистую приведённую стоимость (NPV):

    [ 4.3553 ( 30 000 − 5000 ) ] − 100 000 = $ 8 881.52 {displaystyle [4.3553,(30,000-5000)]-100,000=$,8,881.52}

    Поскольку NPV больше нуля, то было бы лучше инвестировать в проект, чем ничего не делать, и корпорации должны вкладывать средства в этот проект, если нет альтернативы с более высоким NPV.

    Сравнение эффективности альтернативных проектов

    Использование NPV может привести к ошибке при сравнении эффективности разнопараметрических инвестиционных проектов и при формировании портфеля инвестиционных проектов. Под разнопараметрическими понимаются такие проекты, у которых одновременно отличаются три инвестиционных параметра: сумма инвестиций, расчётный период и ежегодные финансовые результаты (Коган, 2012).

    Покажем это на следующем примере. Сравним эффективность покупки векселя А и векселя В. Эти сделки можно рассматривать как простейшие инвестиционные проекты с единственным оттоком и единственным притоком. Вексель А стоит 100 тыс.р., его выкупят через три года, заплатив при этом 150 тыс.р. Вексель В стоит 50 тыс.р., его выкупят через два года, заплатив при этом 70 тыс. р. При ставке дисконта 10 %, N P V A {displaystyle NPV^{A}} = 12,7 тыс.р., что больше, чем N P V B {displaystyle NPV^{B}} =7,85 тыс.р.

    Таким образом, по NPV, проект А эффективнее проекта В. Казалось бы, инвестору выгоднее покупать векселя типа А. Однако, представим, что этот инвестор купит два векселя В. При этом он потратит те же 100 тыс.р., что и для покупки векселя А, но выгод получит больше: N P V B + B {displaystyle NPV^{B+B}} = 15,7 тыс.р. таким образом, инвестиции в векселя типа В выгоднее, чем инвестиции в векселя типа А.

    Эти два проекта отличаются не только по суммам инвестиций, но и по расчётным периодам: покупка векселя А — трёхлетний проект, покупка векселя В — двухлетний проект. Если добавить в анализ и этот фактор, то покупка векселя А выглядит ещё менее выгодной. Так, инвестор, имеющий только 100 тыс.р., за шесть лет сможет только дважды купить вексель типа А (NPV этих двух сделок составит 22,24 тыс.р.), но трижды по два векселя типа В (NPV этих шести сделок составит 39,4 тыс.р.). Таким образом, в результате включения в анализ суммы инвестиций и расчётного периода проектов, векселя типа В выглядят ещё более эффективными, чем векселя типа А.

    Из данного примера следует вывод, что для корректного анализа эффективности инвестиций, необходимо учитывать три фактора: NPV, сумму инвестиций и расчётный период проекта. Все эти факторы объединены в индекс скорости удельного прироста стоимости, поэтому при использовании этого показателя не возникают вышеуказанные проблемы.



    Имя:*
    E-Mail:
    Комментарий:
    Информационный некоммерческий ресурс fccland.ru © 2022
    При цитировании информации ссылка на сайт обязательна.
    Копирование материалов сайта ЗАПРЕЩЕНО!