Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ, ветряк) — устройство для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора с последующим её преобразованием в электрическую энергию.
Ветрогенераторы можно разделить на три категории: промышленные, коммерческие и бытовые (для частного использования).
Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветровая электростанция. Раньше считалось, что они полностью экологичны, чем отличаются от традиционных. Однако лопасти ветрогенератора сделаны из полимерного композита, вторичное использование и переработка которого невыгодны с точки зрения расходов. Сейчас вопрос о переработке лопастей является открытым.
Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 8 МВт.
Мощность ветрогенератора зависит от мощности воздушного потока ( N {displaystyle N} ), определяемой скоростью ветра и ометаемой площадью N = p S V 3 / 4 {displaystyle N=pSV^{3}/4} ,
где: V {displaystyle V} — скорость ветра, p {displaystyle p} — плотность воздуха, S {displaystyle S} — ометаемая площадь.
Существуют классификации ветрогенераторов по количеству лопастей, по материалам, из которых они выполнены, по оси вращения и по шагу винта.
Существуют два основных типа ветротурбин:
Также существуют барабанные и роторные ветротурбины.
Ветрогенераторы, как правило, используют три лопасти для достижения компромисса между величиной крутящего момента (возрастает с ростом числа лопастей) и скоростью вращения (понижается с ростом числа лопастей).
Закон Беца предсказывает, что коэффициент использования энергии ветра (КИЭВ) горизонтальных, пропеллерных и вертикально-осевых установок ограничен константой 0,593. К настоящему времени достигнутый на горизонтальных пропеллерных ВЭУ коэффициент использования энергии ветра составляет 0,4. На данный момент этот коэффициент у ветрогенераторов (ветроустановок) ГРЦ-Вертикаль составляет 0,38. Проведенные экспериментальные исследования российских вертикально-осевых установок показали, что достижение значения 0,4-0,45 - вполне реальная задача. Таким образом коэффициенты использования энергии ветра горизонтально-осевых пропеллерных и вертикально-осевых ВЭУ близки.
ВЭУ состоит из:
полученная электроэнергия поступает в:
Состоит из следующих деталей:
Состоит из следующих деталей:
Закон сохранения массы требует, чтобы количество воздуха, входящего и выходящего из турбины, было одинаковым. Соответственно, закон Беца дает максимально достижимое извлечение энергии ветра ветряной турбиной как 16/27 (59,3%) скорости, с которой кинетическая энергия воздуха достигает турбины.
Таким образом, максимальная теоретическая выходная мощность ветряной машины равна 16/27 кинетической энергии воздуха, который достигает эффективной площади диска машины за единицу времени. При эффективной площади диска A {displaystyle A} и скорости ветра v {displaystyle v} максимальная теоретическая выходная мощность равна
P = 16 27 1 2 ρ v 3 A = 8 27 ρ v 3 A {displaystyle P={frac {16}{27}}{frac {1}{2}} ho v^{3}A={frac {8}{27}} ho v^{3}A} ,где ρ — плотность воздуха.
Трение лопастей о воздух и лобовое сопротивление являются главными факторами, определяющими эффективность передачи энергии от ветра к ротору и, следовательно, стоимость энергии, вырабатываемой ветрогенератором. Среди других факторов снижения эффективности — потери в редукторе, в генераторе и преобразователе. По данным на 2001 год турбины, подключенные к коммерческим коммунальным предприятиям, при номинальной рабочей скорости выдавали от 75% до 80% предельной мощности, определяемой по закону Беца.
Эффективность может немного снизиться со временем из-за пыли, дефектов поверхности лопастей и налипших насекомых, которые снижают подъемную силу лопасти. Анализ 3128 ветряных турбин старше 10 лет в Дании показал, что КПД половины турбин не снизился, а у другой половины снижался в среднем на 1,2% в год.
В целом, более стабильные и постоянные погодные условия (особенно скорость ветра) приводят к повышению эффективности в среднем на 15% по сравнению с неустойчивой погодой.
Было обнаружено, что различные материалы по-разному влияют на эффективность ветряных турбин. В эксперименте Университета Эге были сконструированы три трёхлопастные ветряные турбины диаметром 1 м с разным материалом лопастей: стекловолокно и углеродное волокно с эпоксидным связующим, углеродное волокно, стекло-полистирол. Испытания показали, что материалы с более высокой общей массой имеют больший момент трения и, следовательно, более низкий коэффициент мощности.
Промышленный ветрогенератор строится на подготовленной площадке за 7-10 дней. Получение разрешений регулирующих органов на строительство ветровой фермы может занимать год и более. Кроме того, для обоснования строительства ветроустановки или ветропарка необходимо проведение длительных (не менее года) исследований ветра в районе строительства. Эти мероприятия значительно увеличивают срок реализации ветроэнергетических проектов.
Для строительства необходимы дорога до строительной площадки, место для размещения узлов при монтаже, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.
В ходе эксплуатации промышленных ветрогенераторов возникают различные проблемы:
Норвежская компания StatoilHydro и немецкий концерн Siemens AG разработали плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в июне 2009 года. Турбина под названием Hywind, разработанная Siemens Renewable Energy, весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров. Аналогичные разработки ведутся в США.
Компания Magenn разработала специальный вращающийся от ветра аэростат с установленным на нём генератором, который сам поднимается на высоту 120—300 метров. Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Аппарат может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.
Компания Windrotor предлагает конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра. Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.
В мае 2009 года в Германии компанией Advanced Tower Systems (ATS) был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне. Нижняя часть башни высотой 76,5 метров построена из железобетона. Верхняя часть высотой 55 метров построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 метров. Увеличение высоты башни позволит увеличить выработку электроэнерии до 20 %.
В конце 2010 года испанские компании Gamesa, Iberdrola, Acciona Alstom Wind, Técnicas Reunidas, Ingeteam, Ingeciber, Imatia, Tecnitest Ingenieros и DIgSILENT Ibérica создали группу для совместной разработки ветрогенератора мощностью 15,0 МВт.
Евросоюз создал исследовательский проект "UpWind" для разработки офшорного ветрогенератора мощностью 20 МВт.
В 2013 году японская компания "Mitsui Ocean Development & Engineering Company" разработала гибридную установку: на единой плавающей в воде оси установлена ветровая турбина и турбина, работающая от приливной энергии.
Самая мощная ветряная турбина в мире — 14-222 DD компании Siemens Gamesa (длина её лопасти достигает 108 м, а диаметр — 222 м), рекордсмен по максимальной выработке электроэнергии за сутки: 359 мегаватт-часов; 60 таких турбин будут установлены на ветряной электростанции Moray West в заливе Мори-Ферт в Шотландии.
Таблица 10 крупнейших производителей промышленных ветрогенераторов в 2010 году, МВт:
В 2014 году суммарные мощности производителей турбин достигли 71 ГВт.
Компания Bloomberg New Energy Finance производит расчёт ценового индекса ветрогенераторов (Wind Turbine Price Index). С 2008 года до 2010 года средние цены на ветрогенераторы снизились на 15 %. В 2008 году средняя цена ветрогенератора составляла 1,22 млн евро за 1 МВт мощности.
В августе 2010 года средняя цена одного МВт ветрогенератора составляла 1,04 млн евро.
В 2021 стоимость выросла до 4 млн евро (Германия, строительство возле города Флёте).
К малой ветроэнергетике относятся установки мощностью менее 100 кВт. Установки мощностью менее 1 кВт относятся к микро-ветровой энергетике. Они применяются на яхтах, сельскохозяйственных фермах для водоснабжения и т. д.
Малые ветрогенераторы могут работать автономно, то есть без подключения к общей электрической сети.
Некоторые современные бытовые ИБП имеют модуль подключения источника постоянного тока специально для работы с солнечными батареями или ветрогенераторами. Таким образом, ветрогенератор может быть частью домашней системы электропитания, снижая потребление энергии от электросети.
В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительную величину у основной массы производств на фоне других затрат. Ключевым для потребителя остаётся надёжность и стабильность электроснабжения.
Основными факторами, приводящими к удорожанию энергии для использования в промышленности, получаемой от ветрогенераторов, являются:
Считается, что применение малых автономных ветрогенераторов в быту малоцелесообразно из-за:
Однако, при наличии общей электросети и современного ИБП с двойным преобразованием эти факторы становятся неактуальными, также часто такие ИБП предусматривают возможность дополнения различными нестабильными источниками постоянного тока, такими как ветрогенератор или солнечная батарея.
Наиболее экономически целесообразным в настоящее время является получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью тепловых насосов в тепло для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:
Индустрия домашних ветрогенераторов активно развивается, и за вполне умеренные деньги уже сейчас можно приобрести ветровую установку и на долгие годы обеспечить энергонезависимость своему загородному дому. Обычно для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 1 кВт при скорости ветра 8 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором, а ветрогенераторы с вертикальными осями могут быть дополнены меньшими ветрогенераторами (например, турбина Дарье может быть дополнена ротором Савониуса. При этом одно другому не мешает — источники будут дополнять друг друга).
Наиболее перспективными регионами для развития малой ветроэнергетики считаются регионы со стоимостью электроэнергии более $0,1 за кВт·ч. Себестоимость электроэнергии, производимой малыми ветрогенераторами в 2006 г. в США составляла $0,10-$0,11 за кВт·ч.
Американская ассоциация ветровой энергетики (AWEA) ожидает, что в ближайшие 5 лет себестоимость снизится до $0,07 за кВт·ч. По данным AWEA, в США в 2006 г. было продано 6807 малых ветровых турбин. Их суммарная мощность 17 543 кВт. Их суммарная стоимость $56 082 850 (примерно $3200 за кВт мощности). В остальном мире в 2006 г. были проданы 9502 малых турбины (без учёта США), их суммарная мощность 19 483 кВт.
Департамент Энергетики США (DoE) в конце 2007 года объявил о готовности финансирования особо малых (до 5 кВт) ветрогенераторов персонального использования.
AWEA прогнозирует, что к 2020 году суммарная мощность малой ветровой энергетики США вырастет до 50 тыс. МВт, что составит около 3 % от суммарных мощностей страны. Ветровые турбины будут установлены в 15 млн домов и на 1 млн малых предприятий. В отрасли малой ветроэнергетики будут заняты 10 тыс. человек. Они ежегодно будут производить продукции и услуг на сумму более чем $1 млрд.
В России тенденция установки ветрогенераторов для оснащения домов электричеством только зарождается. На рынке присутствуют буквально несколько производителей маломощных бытовых ветрогенераторов именно для домашнего использования. Цены на ветрогенераторы мощностью 1 кВт с полной комплектацией начинаются от 35-40 тыс. рублей (на 2012 год). Сертификация на установку данного оборудования не требуется.