Стехиометрическая горючая смесь


Стехиометрическая горючая смесь (от др.-греч. στοιχεῖον «основа; элемент» + μετρέω «измеряю») — смесь окислителя и горючего, в которой окислителя ровно столько, сколько необходимо для полного окисления горючего.

Стехиометрическая смесь обеспечивает полное сгорание топлива без остатка избыточного окислителя в продуктах горения.

Определения

Отношение количества окислителя к количеству топлива в процессе сжигания или в горючей смеси топливо — окислитель измеряют либо в виде отношения масс, либо в отношении объёмов, либо в отношении количества молей. Соответственно, различают массовое L 0 , {displaystyle L_{0},} , объёмное L V {displaystyle L_{V}} и молярное L M {displaystyle L_{M}} отношения:

L 0 = m o m f , {displaystyle L_{0}={frac {m_{o}}{m_{f}}},} L V = V o V f , {displaystyle L_{V}={frac {V_{o}}{V_{f}}},} L M = M o M f , {displaystyle L_{M}={frac {M_{o}}{M_{f}}},} где m o ,   m f {displaystyle m_{o}, m_{f}} — массы окислителя и топлива; V o ,   V f {displaystyle V_{o}, V_{f}} — объёмы окислителя и топлива; M o ,   M f {displaystyle M_{o}, M_{f}} — молярное количество окислителя и топлива (число молей).

Для газообразных смесей топлива и окислителя в соответствии с законом Авогадро L M = L V . {displaystyle L_{M}=L_{V}.}

Если в процессе химической реакции горения в продуктах горения не будет ни свободного окислителя, ни несгоревшего топлива, то такое соотношение топлива и окислителя называют стехиометрическим.

Например, реакция горения водорода в кислороде со стехиометрическими коэффициентами:

2 H 2 + O 2 ⟶ 2 H 2 O {displaystyle {ce {2H2 + O2 -> 2H2O}}} .

В этой реакции в продуктах горения (в правой части уравнения) нет ни горючего, ни окислителя, причём на 2 моля водорода требуется 1 моль кислорода, или, по закону Авогадро, на 2 объёма водорода 1 объём кислорода, или на 4 г водорода 32 г кислорода, то есть, при полном сгорании водорода без избытка кислорода: L V s t = L M s t = 1 / 2 = 0 , 5 , {displaystyle L_{Vst}=L_{Mst}=1/2=0,5,} L 0 s t = 32 / 4 = 8. {displaystyle L_{0st}=32/4=8.} Эти численные значения называют стехиометрическими отношениями.

Стехиометрические отношения зависят от вида топлива и окислителя, например, в реакции горения метана в кислороде:

CH 4 + 2 O 2 ⟶ CO 2 + 2 H 2 O {displaystyle {ce {CH4 + 2O2 -> CO2 + 2H2O}}} L V s t = L M s t = 2 , {displaystyle L_{Vst}=L_{Mst}=2,} L 0 s t = 64 / 16 = 4. {displaystyle L_{0st}=64/16=4.}

Коэффициентом избытка окислителя называют отношение фактического отношения окислитель/топливо к стехиометрическому:

α = L 0 / L 0 s t = L V / L V s t = L M / L M s t , {displaystyle alpha =L_{0}/L_{0st}=L_{V}/L_{Vst}=L_{M}/L_{Mst},}

причём α {displaystyle alpha } не зависит в каком виде определено отношение окислитель/топливо массовом, молярном или объёмном. Очевидно, что при стехиометрическом отношении окислитель/топливо α = 1. {displaystyle alpha =1.}

Смеси топливо/окислитель у которых α < 1 {displaystyle alpha <1} называют богатыми смесями, а α > 1 {displaystyle alpha >1} — бедными.

В зарубежной научно-технической литературе коэффициент избытка окислителя обычно обозначают буквой λ . {displaystyle lambda .}

Также используется параметр, называемый коэффициентом избытка топлива ϕ = 1 / α , {displaystyle phi =1/alpha ,} величина, обратная к коэффициенту избытка окислителя.

Отношение воздух/топливо и коэффициент избытка воздуха

Наиболее часто используемый окислитель — кислород атмосферного воздуха, поэтому часто используется понятие коэффициент отношения воздух/топливо — отношение массы L 0 a {displaystyle L_{0a}} или объёма L V a {displaystyle L_{Va}} воздуха к массе или объёму топлива:

L 0 a = m a m f , {displaystyle L_{0a}={frac {m_{a}}{m_{f}}},} L V a = V a V f , {displaystyle L_{Va}={frac {V_{a}}{V_{f}}},} где m a ,   m f {displaystyle m_{a}, m_{f}} — массы воздуха и топлива; V a ,   V f {displaystyle V_{a}, V_{f}} — объёмы воздуха и топлива.

Иногда, при расчётах по стехиометрическим уравнениям горения, применяют молярное отношение воздуха к топливу, при этом считают, что молекулярная масса воздуха примерно равна 29 г/моль.

L M a = M a M f , {displaystyle L_{Ma}={frac {M_{a}}{M_{f}}},} где M a ,   M f {displaystyle M_{a}, M_{f}} — молярное количество воздуха и топлива (число молей).

Воздух содержит другие газы, не участвующие в процессе горения, в основном это азот с объёмной (и молярной) концентрацией около 78 %. Для расчёта стехиометрического соотношения воздух/топливо этот азот и другие инертные газы нужно учитывать в уравнении химической реакции, для простоты коэффициентов уравнения примем, что в воздухе на 1 молекулу (объём) кислорода приходится 4 молекулы (объёма) азота, тогда уравнение горения метана в воздухе будет:

CH 4 + 2 O 2 + 8 N 2 ⟶ CO 2 + 2 H 2 O + 8 N 2 {displaystyle {ce {CH4 + 2O2 + 8N2 -> CO2 + 2H2O + 8N2}}} ,

откуда следует, что на 1 объём метана для стехиометрического горения в воздухе требуется приблизительно 10 объёмов воздуха, точнее — 9,66 объёмов, расхождение обусловлено тем, что в уравнении не учтён аргон воздуха с концентрацией около 1 об. % и точное объемное значение концентрации кислорода в воздухе равное 20,95 %.

Стехиометрические отношения воздух/топливо для некоторых топлив приведены в таблице для воздуха при температуре 25°С и давлении 100 кПа.

Отношение фактического объёма или массы воздуха к стехиометрическому объёму или массе воздуха называют коэффициентом избытка воздуха α {displaystyle alpha } :

α = L 0 a / L 0 a s t = L V a / L V a s t = L M / L M s t . {displaystyle alpha =L_{0a}/L_{0ast}=L_{Va}/L_{Vast}=L_{M}/L_{Mst}.}

Коэффициент избытка воздуха в различных топливосжигающих устройствах и двигателях

Двигатели внутреннего сгорания

Коэффициент избытка воздуха α {displaystyle alpha } всегда для стехиометрической смеси равен единице. Но практически в двигателях внутреннего сгорания (ДВС) этот коэффициент отличается от 1. Так например, оптимальный с точки зрения экономичности α {displaystyle alpha } для двигателей с искровым зажиганием 1,03—1,05, это превышение обусловлено тем, что из-за несовершенства смешения топлива с воздухом в карбюраторе или цилиндре двигателя с впрыском топлива для полного сгорания топлива необходимо небольшое увеличение α {displaystyle alpha } . С другой стороны, наибольшая мощность двигателя при прочих равных достигается при работе на более богатых смесях ( α = 0 , 83...0 , 88 {displaystyle alpha =0,83...0,88} ). На рисунке показаны зависимости мощности и экономичности двигателя с искровым зажиганием от α {displaystyle alpha } и соотношения воздух/топливо для бензина при некоторых значениях α {displaystyle alpha } . Так, для бензина стехиометрическое соотношение воздух/топливо по массе составляет 14,7, для смеси пропан-бутан это соотношение равно 15,6.

В современных двигателях поддержание α {displaystyle alpha } близкого к оптимальному осуществляется с помощью автоматической системы управления соотношением топливо/воздух. Основным датчиком в таких системах служит датчик концентрации свободного кислорода в выхлопных газах двигателя — так называемый лямбда-зонд.

В дизельных двигателях для исключения сильного сажеобразования α {displaystyle alpha } поддерживают на уровне 1,1…1,3.

Газовые турбины

В камере сгорания газовой турбины, например двигателя самолёта α {displaystyle alpha } поддерживается близким к 1. Но перед лопатками турбины для снижения температуры газа из соображений жаропрочности лопаток газ из камеры сгорания разбавляется воздухом, отбираемым от компрессора турбины, что снижает его температуру от приблизительно 1600 °C до 1300…1400 °C, поэтому α {displaystyle alpha } в выхлопных газах турбины α {displaystyle alpha } значительно больше 1 и достигает 5.

Промышленные, отопительные и бытовые котлы

α {displaystyle alpha } в таких котлах существенно зависит от вида топлива. В газовых котлах небольшой мощности или производительности α {displaystyle alpha } составляет 1,2…1,4, в крупных энергетических котлах сжигающих природный газ — 1,03…1,1. В котлах, работающих на жидком и твёрдом топливе для полноты сгорания α {displaystyle alpha } поддерживается в пределах от 1,5 до 2…3.



Имя:*
E-Mail:
Комментарий:
Информационный некоммерческий ресурс fccland.ru ©
При цитировании информации ссылка на сайт обязательна.
Копирование материалов сайта ЗАПРЕЩЕНО!