Специализированные источники синхротронного излучения


Специализированные источники синхротронного излучения — ускорители электронов, построенные специально для генерации синхротронного излучения (СИ). Как правило, это синхротроны со специальными параметрами (большой ток пучка, малый эмиттанс, высокая яркость излучения). Однако, последние и проектируемые поколения источников СИ — это лазеры на свободных электронах и ускорители-рекуператоры (см., например, проект MARS).

Поколения источников СИ

Источники синхротронного излучения условно делят на четыре поколения:

  • Первое поколение — синхротроны, построенные для экспериментов по физике высоких энергий, где синхротронное излучение было побочным явлением. На этих установках впервые начали отрабатываться методики использования синхротронного излучения;
  • Второе поколение — синхротроны, специально построенные для генерации СИ. В основном использовали для генерации излучения поворотные магниты. Первым ускорителем, построенным специально для использования синхротронного излучения стал синхротрон Tantalus, запущенный в 1968 году в США;
  • Третье поколение — источники СИ сегодняшнего дня. При проектировании синхротронов 3-го поколения в их конструкции предусматривалось большое число длинных (5 и более метров) прямолинейных промежутков, предназначенных для установки специальных вставок, генерирующих СИ — вигглеров и ондуляторов. Использование для генерации излучения специализированных устройств гораздо более энергоэффективно — большая часть излучаемой электронами энергии выводится непосредственно на экспериментальные станции, при этом снятие магнитного поля с неиспользуемых в отдельные моменты времени вставных устройств позволяет также существенно уменьшить энергопотребление экспериментальной установки. Следует указать, что мощность потерь энергии электронами на одном вставном устройстве может превышать 300 кВт.
  • Четвёртое поколение источников синхротронного излучения — это проекты, которые не являются более синхротронами. Дальнейшее совершенствование накопителей — а именно повышение плотности электронов, повышение яркости источника СИ уже физически невозможно. Критическим параметром стал эмиттанс — фактически, фазовый объём, занимаемый электронами при движении по орбите. При этом оказывается, что если даже в начальный момент инжекции электроны имели очень маленький эмиттанс, в процессе многократного (миллиарды раз) прохождения по орбите, они «забывают» о своем начальном состоянии, и эмиттанс пучка далее определяется квантовыми флуктуациями синхротронного излучения. Для уменьшения эмиттанса (и таким образом повышения яркости) предлагаются источники на базе лазеров на свободных электронах, а также линейных ускорителей с рекуперацией энергии «MARS»
  • Top-Up режим

    Top-Up или режим инжекции на полной энергии — режим работы ускорительно-накопительного комплекса (синхротрона). Для реализации Top-Up режима в составе комплекса необходимо иметь дополнительный, бустерный синхротрон, обеспечивающий инжекцию электронов в накопительное кольцо основного ускорителя на полной (рабочей) энергии ускорителя. Инжекция на полной энергии позволяет не проводить перенакоплений электронов, а добавлять электроны к уже движущимся в накопительном кольце, компенсируя происходящие потери частиц.

    В отличие от этого режима, более распространенной конструкцией ускорительно-накопительного комплекса является такая, в которой инжекция происходит на энергии в несколько раз меньшей. Меньшая энергия инжекции позволяет иметь гораздо более дешёвую и компактную систему инжекции, но требует регулярных перекоплений электронного пучка (со сбросом ранее накопленных электронов), и последующего ускорения накопленных электронов до полной энергии в основном накопительном кольце.

    Российские источники СИ

    • Курчатовский источник синхротронного излучения — накопители Сибирь-1, Сибирь-2.
    • «Сибирский центр синхротронного и терагерцового излучения» — ускорители ВЭПП-3, ВЭПП-4 — используются в том числе в качестве источников СИ. Также работает Новосибирский лазер на свободных электронах в терагерцовой области излучения.
    • Зеленоградский электронный синхротрон — институт физпроблем им. Ф. В. Лукина (законсервирован).
    • Сибирский кольцевой источник фотонов (СКИФ) — строящийся специализированный источник поколения 4+, в Новосибирской области, около Наукограда Кольцово.

    Некоторые источники СИ третьего поколения

    • Австралийский синхротрон (ASP)
    • ALBA
    • APS
    • BESSY II
    • Diamond
    • ELETTRA
    • SOLEIL
    • SPring-8


    Имя:*
    E-Mail:
    Комментарий:
    Информационный некоммерческий ресурс fccland.ru ©
    При цитировании информации ссылка на сайт обязательна.
    Копирование материалов сайта ЗАПРЕЩЕНО!