Цилиндрические функции

02.08.2023

Цилиндрические функции — общее название для специальных функций одного переменного, являющихся решениями обыкновенных дифференциальных уравнений, получающихся при применении метода разделения переменных для уравнений математической физики, таких как уравнение Лапласа, уравнение Пуассона, уравнение Гельмгольца и др. в цилиндрической системе координат. Обычно переменной является расстояние до оси с.к. Произведение цилиндрических функций с гармоническими функциями по другим направлениям даёт цилиндрические гармоники.

Наиболее часто встречающиеся цилиндрические функции:

  • Функции Бесселя
    • первого рода, ограниченные
    • второго рода (называемые также «функции Неймана»), неограниченные в нуле
  • Функции Ганкеля первого и второго рода — комплексные линейные комбинации функций Бесселя и Неймана
  • Модифицированные функции Бесселя — функции Бесселя от комплексного аргумента, неограниченные монотонные.
    • первого рода (т. н. «функции Инфельда»)
    • второго рода (т. н. «функции Макдональда»)
  • Функция Бурже — обобщение интегрального представления функции Бесселя
  • Частные решения неоднородного уравнения Бесселя:
    • Функция Ангера
    • Функция Вебера
    • Функция Струве
    • Функция Ломмеля
  • Функции параболического цилиндра
  • Функции Кельвина


Имя:*
E-Mail:
Комментарий:
Информационный некоммерческий ресурс fccland.ru © 2022
При цитировании информации ссылка на сайт обязательна.
Копирование материалов сайта ЗАПРЕЩЕНО!